맞춤기술찾기

이전대상기술

색상과 형태를 동시에 고려한 실시간 영상 추적 방법 및 이를 위한 장치

  • 기술번호 : KST2018013192
  • 담당센터 : 대전기술혁신센터
  • 전화번호 : 042-610-2279
요약, Int. CL, CPC, 출원번호/일자, 출원인, 등록번호/일자, 공개번호/일자, 공고번호/일자, 국제출원번호/일자, 국제공개번호/일자, 우선권정보, 법적상태, 심사진행상태, 심판사항, 구분, 원출원번호/일자, 관련 출원번호, 기술이전 희망, 심사청구여부/일자, 심사청구항수의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 서지정보 표입니다.
요약 색상과 형태를 동시에 고려한 실시간 영상 추적 방법 및 이를 위한 장치가 개시된다. 본 발명에 따른 실시간 영상 추적 장치는 입력영상을 기반으로 상관 필터 모델 및 색상 확률 밀도 모델 중 적어도 하나를 생성하고, 입력영상에 상관 필터 모델을 적용하여 산출된 상관 필터 반응값을 기반으로 추적 대상의 초기 위치 및 초기 크기를 판단하고, 상관 필터 반응값과 색상 확률 밀도 모델을 기반으로 산출된 색상 객체 확률을 기반으로 결합 확률을 산출하고, 초기 위치 및 초기 크기에 결합 확률을 적용하여 판단된 추적 대상에 대한 최종 위치 및 최종 크기를 기반으로 추적 대상에 상응하는 객체 모델을 갱신할 수 있다.
Int. CL G06T 7/277 (2017.01.01) G06T 7/246 (2017.01.01) G06T 7/90 (2017.01.01)
CPC G06T 7/277(2013.01) G06T 7/277(2013.01) G06T 7/277(2013.01) G06T 7/277(2013.01) G06T 7/277(2013.01)
출원번호/일자 1020170033140 (2017.03.16)
출원인 한국전자통신연구원
등록번호/일자
공개번호/일자 10-2018-0105876 (2018.10.01) 문서열기
공고번호/일자
국제출원번호/일자
국제공개번호/일자
우선권정보
법적상태 등록
심사진행상태 수리
심판사항
구분 신규
원출원번호/일자
관련 출원번호
심사청구여부/일자 Y (2019.12.05)
심사청구항수 20

출원인

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 출원인 표입니다.
번호 이름 국적 주소
1 한국전자통신연구원 대한민국 대전광역시 유성구

발명자

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 발명자 표입니다.
번호 이름 국적 주소
1 이재영 대한민국 대전광역시 유성구

대리인

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 대리인 표입니다.
번호 이름 국적 주소
1 한양특허법인 대한민국 서울특별시 강남구 논현로**길 **, 한양빌딩 (도곡동)

최종권리자

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 최종권리자 표입니다.
번호 이름 국적 주소
최종권리자 정보가 없습니다
번호, 서류명, 접수/발송일자, 처리상태, 접수/발송일자의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 행정처리 표입니다.
번호 서류명 접수/발송일자 처리상태 접수/발송번호
1 [특허출원]특허출원서
[Patent Application] Patent Application
2017.03.16 수리 (Accepted) 1-1-2017-0261136-90
2 [심사청구]심사청구(우선심사신청)서
[Request for Examination] Request for Examination (Request for Preferential Examination)
2019.12.05 수리 (Accepted) 1-1-2019-1257052-17
번호, 청구항의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 청구항 표입니다.
번호 청구항
1 1
입력영상을 기반으로 추적 대상의 형태를 고려한 상관 필터 모델 및 상기 추적 대상의 색상을 고려한 색상 확률 밀도 모델 중 적어도 하나를 생성하는 생성부;상기 입력영상에 상기 상관 필터 모델을 적용하여 산출된 상관 필터 반응값을 기반으로 상기 추적 대상에 대한 초기 위치 및 초기 크기를 판단하는 판단부;상기 상관 필터 반응값과 상기 색상 확률 밀도 모델을 기반으로 산출된 색상 객체 확률을 기반으로 결합 확률을 산출하는 산출부; 및상기 초기 위치 및 초기 크기에 상기 결합 확률을 적용하여 상기 추적 대상에 대한 최종 위치 및 최종 크기를 판단하고, 상기 최종 위치 및 최종 크기를 기반으로 상기 추적 대상에 상응하는 객체 모델을 갱신하는 갱신부를 포함하는 것을 특징으로 하는 실시간 영상 추적 장치
2 2
청구항 1에 있어서,상기 산출부는상기 입력영상을 구성하는 복수개의 픽셀들 각각에 대한 상기 상관 필터 반응값을 기반으로 상기 복수개의 픽셀들 각각에 대한 상기 색상 객체 확률의 가중 평균(weighted average)을 계산하여 상기 결합 확률을 산출하는 것을 특징으로 하는 실시간 영상 추적 장치
3 3
청구항 1에 있어서,상기 갱신부는상기 초기 위치를 기준으로 상기 결합 확률의 확률 밀도가 최대가 되는 지점을 상기 최종 위치로 판단하고, 상기 초기 크기를 그대로 상기 최종 크기로 판단하는 것을 특징으로 하는 실시간 영상 추적 장치
4 4
청구항 2에 있어서,상기 판단부는상기 복수개의 픽셀들 중 상기 상관 필터 반응값이 최대인 어느 하나의 픽셀에 상응하는 지점을 상기 1차 위치로 판단하고, 상기 입력영상에 대한 상기 상관 필터 반응값이 최대가 될 때에 해당하는 상기 입력영상의 스케일의 역수와 상기 입력영상에 대한 이전 프레임에서의 상기 추적 대상의 크기를 곱한 결과를 상기 1차 크기로 판단하는 것을 특징으로 하는 실시간 영상 추적 장치
5 5
청구항 2에 있어서,상기 산출부는상기 입력영상에 상기 색상 확률 밀도 모델을 역투영하여 상기 복수개의 픽셀들 각각에 대한 상기 색상 객체 확률을 산출하는 것을 특징으로 하는 실시간 영상 추적 장치
6 6
청구항 1에 있어서,상기 생성부는상기 추적 대상에 상응하는 영역정보를 획득하고, 상기 입력영상에 대한 전체영역 중 상기 영역정보에 상응하는 객체영역에 대해 상기 상관 필터 모델 및 상기 색상 확률 밀도 모델 중 적어도 하나를 생성하는 것을 특징으로 하는 실시간 영상 추적 장치
7 7
청구항 6에 있어서,상기 영역정보는사용자 설정 및 물체 감지 모듈 중 적어도 하나를 기반으로 획득되는 것을 특징으로 하는 실시간 영상 추적 장치
8 8
청구항 1에 있어서,상기 생성부는상기 추적 대상이 최초로 설정된 경우 및 상기 추적 대상이 재설정된 경우 중 적어도 하나의 경우에 상기 상관 필터 모델 및 상기 색상 확률 밀도 모델 중 적어도 하나를 생성하는 것을 특징으로 하는 실시간 영상 추적 장치
9 9
청구항 6에 있어서,상기 생성부는상기 객체영역에 대해 상관 필터 연산을 수행한 결과가 커널 함수인 필터를 상기 상관 필터 모델로 생성하는 것을 특징으로 하는 실시간 영상 추적 장치
10 10
청구항 6에 있어서,상기 생성부는상기 객체영역에 상응하는 색상 히스토그램의 값을 상기 객체영역을 구성하는 픽셀의 총 수로 나누어 상기 색상 확률 밀도 모델을 생성하는 것을 특징으로 하는 실시간 영상 추적 장치
11 11
청구항 1에 있어서,상기 갱신부는상기 추적 대상에 상응하는 이전 객체 모델과 상기 최종 위치 및 최종 크기에 의한 신규 객체 모델의 가중 평균을 수행한 결과에 상응하게 상기 객체 모델을 갱신하는 것을 특징으로 하는 실시간 영상 추적 장치
12 12
색상과 형태를 동시에 고려한 실시간 영상 추적 장치를 이용한 실시간 영상 추적 방법에 있어서,상기 실시간 영상 추적 장치가, 입력영상을 기반으로 추적 대상의 형태를 고려한 상관 필터 모델 및 상기 추적 대상의 색상을 고려한 색상 확률 밀도 모델 중 적어도 하나를 생성하는 단계;상기 실시간 영상 추적 장치가, 상기 입력영상에 상기 상관 필터 모델을 적용하여 산출된 상관 필터 반응값을 기반으로 상기 추적 대상에 대한 초기 위치 및 초기 크기를 판단하는 단계;상기 실시간 영상 추적 장치가, 상기 상관 필터 반응값과 상기 색상 확률 밀도 모델을 기반으로 산출된 색상 객체 확률을 기반으로 결합 확률을 산출하는 단계; 및상기 실시간 영상 추적 장치가, 상기 초기 위치 및 초기 크기에 상기 결합 확률을 적용하여 상기 추적 대상에 대한 최종 위치 및 최종 크기를 판단하고, 상기 최종 위치 및 최종 크기를 기반으로 상기 추적 대상에 상응하는 객체 모델을 갱신하는 단계를 포함하는 것을 특징으로 하는 실시간 영상 추적 방법
13 13
청구항 12에 있어서,상기 산출하는 단계는상기 입력영상을 구성하는 복수개의 픽셀들 각각에 대한 상기 상관 필터 반응값을 기반으로 상기 복수개의 픽셀들 각각에 대한 상기 색상 객체 확률의 가중 평균(weighted average)을 계산하여 상기 결합 확률을 산출하는 것을 특징으로 하는 실시간 영상 추적 방법
14 14
청구항 12에 있어서,상기 갱신하는 단계는상기 초기 위치를 기준으로 상기 결합 확률의 확률 밀도가 최대가 되는 지점을 상기 최종 위치로 판단하는 단계; 및상기 초기 크기를 그대로 상기 최종 크기로 판단하는 단계를 포함하는 것을 특징으로 하는 실시간 영상 추적 방법
15 15
청구항 13에 있어서,상기 판단하는 단계는상기 복수개의 픽셀들 중 상기 상관 필터 반응값이 최대인 어느 하나의 픽셀에 상응하는 지점을 상기 1차 위치로 판단하는 단계; 및 상기 입력영상에 대한 상기 상관 필터 반응값이 최대가 될 때에 해당하는 상기 입력영상의 스케일의 역수와 상기 입력영상에 대한 이전 프레임에서의 상기 추적 대상의 크기를 곱한 결과를 상기 1차 크기로 판단하는 단계를 포함하는 것을 특징으로 하는 실시간 영상 추적 방법
16 16
청구항 13에 있어서,상기 산출하는 단계는상기 입력영상에 상기 색상 확률 밀도 모델을 역투영하여 상기 복수개의 픽셀들 각각에 대한 상기 색상 객체 확률을 산출하는 것을 특징으로 하는 실시간 영상 추적 방법
17 17
청구항 12에 있어서,상기 생성하는 단계는상기 추적 대상에 상응하는 영역정보를 획득하고, 상기 입력영상에 대한 전체영역 중 상기 영역정보에 상응하는 객체영역에 대해 상기 상관 필터 모델 및 상기 색상 확률 밀도 모델 중 적어도 하나를 생성하는 것을 특징으로 하는 실시간 영상 추적 방법
18 18
청구항 17에 있어서,상기 영역정보는사용자 설정 및 물체 감지 모듈 중 적어도 하나를 기반으로 획득되는 것을 특징으로 하는 실시간 영상 추적 방법
19 19
청구항 17에 있어서,상기 생성하는 단계는상기 객체영역에 대해 상관 필터 연산을 수행한 결과가 커널 함수인 필터를 상기 상관 필터 모델로 생성하는 단계; 및상기 객체영역에 상응하는 색상 히스토그램의 값을 상기 객체영역을 구성하는 픽셀의 총 수로 나누어 상기 색상 확률 밀도 모델을 생성하는 단계를 포함하는 것을 특징으로 하는 실시간 영상 추적 방법
20 20
청구항 12에 있어서,상기 갱신하는 단계는상기 추적 대상에 상응하는 이전 객체 모델과 상기 최종 위치 및 최종 크기에 의한 신규 객체 모델의 가중 평균을 수행한 결과에 상응하게 상기 객체 모델을 갱신하는 것을 특징으로 하는 실시간 영상 추적 방법
지정국 정보가 없습니다
순번, 패밀리번호, 국가코드, 국가명, 종류의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 패밀리정보 - 패밀리정보 표입니다.
순번 패밀리번호 국가코드 국가명 종류
1 US10282853 US 미국 FAMILY
2 US20180268559 US 미국 FAMILY

DOCDB 패밀리 정보

순번, 패밀리번호, 국가코드, 국가명, 종류의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 패밀리정보 - DOCDB 패밀리 정보 표입니다.
순번 패밀리번호 국가코드 국가명 종류
1 US10282853 US 미국 DOCDBFAMILY
2 US2018268559 US 미국 DOCDBFAMILY
순번, 연구부처, 주관기관, 연구사업, 연구과제의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 국가R&D 연구정보 정보 표입니다.
순번 연구부처 주관기관 연구사업 연구과제
1 국토교통부 한국전자통신연구원 국토교통기술연구개발사업 철도역사 안전관리 지능형 인지시스템 기술 개발