맞춤기술찾기

이전대상기술

구조텐서를 이용한 딥러닝 기반의 영상 개선 방법 및 장치

  • 기술번호 : KST2020012729
  • 담당센터 : 서울서부기술혁신센터
  • 전화번호 : 02-6124-6930
요약, Int. CL, CPC, 출원번호/일자, 출원인, 등록번호/일자, 공개번호/일자, 공고번호/일자, 국제출원번호/일자, 국제공개번호/일자, 우선권정보, 법적상태, 심사진행상태, 심판사항, 구분, 원출원번호/일자, 관련 출원번호, 기술이전 희망, 심사청구여부/일자, 심사청구항수의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 서지정보 표입니다.
요약 본 실시예들은 프로세서, 프로세서에 의해 실행되는 프로그램을 저장하는 메모리 및 영상 촬영 장치에서 촬영된 입력 영상을 수신하는 영상 수신부를 포함하는 영상 개선 방법에 있어서, 프로세서가 다수의 채널 각각에 대한 채널 영상을 포함하는 입력 영상을 입력 받는 단계, 채널 영상을 컨볼루션 연산하여 필터링하는 입력 레지듀얼 블록(Resblock)을 이용하여 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 단계, 추출된 다수의 제1 특징 맵을 서로 결합하여 통합 특징 맵을 생성하는 단계 및 통합 특징 맵을 컨볼루션 연산하여 필터링하는 출력 레지듀얼 블록을 이용하여 제2 특징 맵을 생성하고, 제2 특징 맵을 통해 입력 영상의 왜곡이 개선된 출력 영상을 생성하는 단계를 포함하는 영상 개선 방법을 제시한다.
Int. CL G06T 5/00 (2019.01.01) G06T 5/20 (2006.01.01) G06T 1/20 (2018.01.01)
CPC G06T 5/001(2013.01) G06T 5/001(2013.01) G06T 5/001(2013.01) G06T 5/001(2013.01)
출원번호/일자 1020190129419 (2019.10.17)
출원인 엘아이지넥스원 주식회사, 연세대학교 산학협력단
등록번호/일자 10-2095443-0000 (2020.03.25)
공개번호/일자
공고번호/일자 (20200526) 문서열기
국제출원번호/일자
국제공개번호/일자
우선권정보
법적상태 등록
심사진행상태 수리
심판사항
구분 신규
원출원번호/일자
관련 출원번호
심사청구여부/일자 Y (2019.10.17)
심사청구항수 11

출원인

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 출원인 표입니다.
번호 이름 국적 주소
1 엘아이지넥스원 주식회사 대한민국 경기도 용인시 기흥구
2 연세대학교 산학협력단 대한민국 서울특별시 서대문구

발명자

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 발명자 표입니다.
번호 이름 국적 주소
1 정형주 서울특별시 서대문구
2 김영중 대전광역시 유성구
3 손광훈 서울특별시 서대문구
4 하남구 경기도 성남시 분당구
5 장현성 경기도 성남시 분당구

대리인

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 대리인 표입니다.
번호 이름 국적 주소
1 특허법인우인 대한민국 서울특별시 강남구 역삼로 ***, *층(역삼동, 중평빌딩)

최종권리자

번호, 이름, 국적, 주소의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 인명정보 - 최종권리자 표입니다.
번호 이름 국적 주소
1 엘아이지넥스원 주식회사 경기도 용인시 기흥구
2 연세대학교 산학협력단 서울특별시 서대문구
번호, 서류명, 접수/발송일자, 처리상태, 접수/발송일자의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 행정처리 표입니다.
번호 서류명 접수/발송일자 처리상태 접수/발송번호
1 [특허출원]특허출원서
[Patent Application] Patent Application
2019.10.17 수리 (Accepted) 1-1-2019-1061927-55
2 [우선심사신청]심사청구(우선심사신청)서
[Request for Preferential Examination] Request for Examination (Request for Preferential Examination)
2019.11.19 수리 (Accepted) 1-1-2019-1189353-15
3 의견제출통지서
Notification of reason for refusal
2019.12.11 발송처리완료 (Completion of Transmission) 9-5-2019-0895778-44
4 [명세서등 보정]보정서
[Amendment to Description, etc.] Amendment
2020.02.10 보정승인간주 (Regarded as an acceptance of amendment) 1-1-2020-0136553-10
5 [거절이유 등 통지에 따른 의견]의견(답변, 소명)서
[Opinion according to the Notification of Reasons for Refusal] Written Opinion(Written Reply, Written Substantiation)
2020.02.10 수리 (Accepted) 1-1-2020-0136554-55
6 등록결정서
Decision to grant
2020.03.12 발송처리완료 (Completion of Transmission) 9-5-2020-0187976-39
7 [명세서등 보정]보정서(심사관 직권보정)
2020.04.01 보정승인간주 (Regarded as an acceptance of amendment) 1-1-2020-5008300-91
번호, 청구항의 정보를 제공하는 이전대상기술 뷰 페이지 상세정보 > 청구항 표입니다.
번호 청구항
1 1
프로세서, 상기 프로세서에 의해 실행되는 프로그램을 저장하는 메모리 및 영상 촬영 장치에서 촬영된 입력 영상을 수신하는 영상 수신부를 포함하는 영상 개선 학습 장치의 영상 개선 방법에 있어서,상기 프로세서가,다수의 채널 각각에 대한 채널 영상을 포함하는 상기 입력 영상을 입력 받는 단계;상기 채널 영상을 컨볼루션 연산하여 필터링하는 입력 레지듀얼 블록(Resblock)을 이용하여 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 단계;상기 추출된 다수의 제1 특징 맵을 서로 결합하여 통합 특징 맵을 생성하는 단계;상기 통합 특징 맵을 컨볼루션 연산하여 필터링하는 출력 레지듀얼 블록을 이용하여 제2 특징 맵을 생성하고, 상기 제2 특징 맵을 통해 상기 입력 영상의 왜곡이 개선된 출력 영상을 생성하는 단계;상기 입력 영상, 상기 출력 영상 및 상기 입력 영상의 좌표 도메인을 이용하여 손실 함수를 계산하는 단계; 및상기 손실 함수를 통해 오차를 최소화하기 위한 가중치를 재설정하는 단계를 포함하는 영상 개선 방법
2 2
제1항에 있어서,상기 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 단계는,학습 시 상기 입력 영상의 영향력이 점차 사라지는 현상을 방지하기 위해 다수의 컨볼루션 레이어로 구성된 상기 입력 레지듀얼 블록을 이용하며,상기 입력 레지듀얼 블록의 입력과 상기 다수의 컨볼루션 레이어의 결과의 합으로 상기 제1 특징 맵을 추출하는 것을 특징으로 하는 영상 개선 방법
3 3
제2항에 있어서,상기 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 단계는,상기 입력 영상에 대하여 제1 컨볼루션 연산을 수행함에 따라 컨볼루션 맵을 생성하는 단계;상기 컨볼루션 레이어의 가중치 매개변수가 변화함에 따라 활성화 함수 출력 값의 분포가 변화하는 내부 공변량 변화를 줄이기 위해 상기 출력 값을 정규화하는 단계;상기 생성된 컨볼루션 맵을 기 설정된 함수에 따라 매핑하는 단계; 및상기 매핑된 컨볼루션 맵에 대하여 제2 컨볼루션 연산을 수행함에 따라 상기 제1 특징 맵을 생성하는 단계를 포함하는 영상 개선 방법
4 4
제1항에 있어서,상기 출력 영상을 생성하는 단계는,상기 통합 특징 맵에 대하여 컨볼루션 연산을 수행함에 따라 컨볼루션 출력 맵을 생성하는 단계;컨볼루션 레이어의 가중치 매개변수가 변화함에 따라 활성화 함수 출력 값의 분포가 변화하는 내부 공변량 변화를 줄이기 위해 상기 출력 값을 정규화하는 단계;상기 생성된 컨볼루션 출력 맵을 기 설정된 함수에 따라 매핑하는 단계; 및상기 컨볼루션 출력 맵에 대하여 컨볼루션 연산을 수행함에 따라 제2 특징 맵을 생성하며, 상기 제2 특징 맵을 통해 상기 출력 영상을 생성하는 단계를 포함하는 영상 개선 방법
5 5
삭제
6 6
제1항에 있어서,상기 손실 함수를 계산하는 단계는,상기 출력 영상에 대한 그래디언트 크기의 합으로 형성된 상기 출력 영상의 구조텐서와 상기 입력 영상에 대한 그래디언트 크기의 합으로 형성된 상기 입력 영상의 구조텐서의 차이를 통해 제1 손실 함수를 계산하는 단계; 및상기 출력 영상과 상기 입력 영상의 평균 영상의 차이를 통해 제2 손실 함수를 계산하는 단계를 포함하는 영상 개선 방법
7 7
제6항에 있어서,상기 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 단계는 상기 입력 레지듀얼 블록에 입력되는 다수의 채널 영상 간의 상기 가중치를 공유하며, 손실 함수를 이용하여 상기 가중치를 재 설정하는 것을 특징으로 하는 영상 개선 방법
8 8
제7항에 있어서,상기 출력 영상을 생성하는 단계는 상기 가중치를 재설정하는 단계를 통해 상기 가중치를 조절하여,상기 입력 영상의 채널 별로 서로 다른 객체 정보를 결합하는 단계;상기 입력 영상의 각 채널의 서로 다른 초점 정보를 조합하여 상기 입력 영상의 초점을 개선하는 단계;상기 입력 영상의 각 채널의 서로 다른 노출 정보를 조합하여 노출에 의해 사라진 부분을 복원하는 단계; 및상기 입력 영상의 각 채널의 서로 다른 객체 정보를 조합하여 대조비를 개선하는 단계 중 하나를 수행하여 상기 입력 영상의 왜곡을 개선하는 것을 특징으로 하는 영상 개선 방법
9 9
다수의 채널 각각에 대한 채널 영상을 포함하는 입력 영상을 입력 받는 입력부;상기 채널 영상을 컨볼루션 연산하여 필터링하는 입력 레지듀얼 블록(Resblock)을 이용하여 영상 개선을 위한 다수의 제1 특징 맵을 추출하는 특징 맵 추출부;상기 추출된 다수의 제1 특징 맵을 서로 결합하여 통합 특징 맵을 생성하는 특징 맵 결합부;상기 통합 특징 맵을 컨볼루션 연산하여 필터링하는 출력 레지듀얼 블록을 이용하여 제2 특징 맵을 생성하고, 상기 제2 특징 맵을 통해 상기 입력 영상의 왜곡이 개선된 출력 영상을 생성하는 영상 생성부;상기 입력 영상, 상기 출력 영상 및 상기 입력 영상의 좌표 도메인을 이용하여 손실 함수를 계산하는 손실 함수 계산부; 및상기 손실 함수를 통해 오차를 최소화하기 위한 가중치를 설정하는 가중치 재 설정부를 포함하는 영상 개선 학습 장치
10 10
제9항에 있어서,상기 특징 맵 추출부는,상기 입력 영상에 대하여 제1 컨볼루션 연산을 수행함에 따라 컨볼루션 맵을 생성하는 제1 컨볼루션 필터;컨볼루션 레이어의 가중치 매개변수가 변화함에 따라 활성화 함수 출력 값의 분포가 변화하는 내부 공변량 변화를 줄이기 위해 상기 출력 값을 정규화하는 제1 정규화부;상기 생성된 컨볼루션 맵을 기 설정된 함수에 따라 매핑하는 제1 함수 매핑부; 및상기 매핑된 컨볼루션 맵에 대하여 제2 컨볼루션 연산을 수행함에 따라 상기 제1 특징 맵을 생성하는 제2 컨볼루션 필터를 포함하는 영상 개선 학습 장치
11 11
제9항에 있어서,상기 영상 생성부는,상기 통합 특징 맵에 대하여 컨볼루션 연산을 수행함에 따라 컨볼루션 출력 맵을 생성하는 제3 컨볼루션 필터;컨볼루션 레이어의 가중치 매개변수가 변화함에 따라 활성화 함수 출력 값의 분포가 변화하는 내부 공변량 변화를 줄이기 위해 상기 출력 값을 정규화하는 제2 정규화부; 및상기 생성된 컨볼루션 출력 맵을 기 설정된 함수에 따라 매핑하는 제2 함수 매핑부를 포함하며,상기 영상 생성부는 상기 컨볼루션 출력 맵에 대하여 컨볼루션 연산을 수행함에 따라 제2 특징 맵을 생성하며, 상기 제2 특징 맵을 통해 상기 출력 영상을 생성하는 것을 특징으로 하는 영상 개선 학습 장치
12 12
삭제
13 13
제9항에 있어서,상기 손실 함수 계산부는,(i) 상기 출력 영상에 대한 그래디언트 크기의 합으로 형성된 상기 출력 영상의 구조텐서와 상기 입력 영상에 대한 그래디언트 크기의 합으로 형성된 상기 입력 영상의 구조텐서의 차이를 통해 제1 손실 함수 및 (ii) 상기 출력 영상과 상기 입력 영상의 평균 영상의 차이를 최소화하는 제2 손실 함수를 계산하는 것을 특징으로 하는 영상 개선 학습 장치
지정국 정보가 없습니다
패밀리정보가 없습니다
국가 R&D 정보가 없습니다.